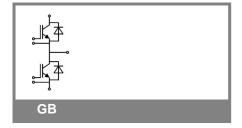


Superfast NPT-IGBT Modules

SKM 200GB063D

Features


- N channel, homogeneous Silicon structure (NPT - Non punch-through IGBT)
- · Low tail current with low temperature dependence
- High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff. of V_{CEsat}
- 50 % less turn off losses
- 30 % less short circuit current
- Very low C_{ies}, C_{oes}, C_{res}
 Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DCB Direct Copper Bonding** Technology without hard mould
- · Large clearance (13 mm) and creepage distances (20 mm)

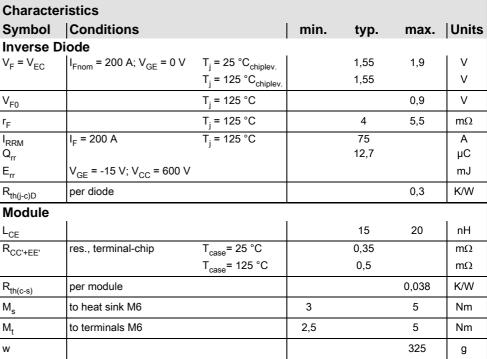
Typical Applications

- Switched mode power supplies
- AC inverter servo drives
- UPS uninterruptable power supplies
- Welding inverters

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specifie								
Symbol	Conditions		Values	Units				
IGBT				_				
V_{CES}	T _j = 25 °C		600	V				
I _C	T _j = 150 °C	T _{case} = 25 °C	260	Α				
		T _{case} = 70 °C	200	Α				
I _{CRM}	I _{CRM} =2xI _{Cnom}		400	Α				
V_{GES}			± 20	V				
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C	10	μs				
Inverse Diode								
I _F	T _j = 150 °C	T_{case} = 25 °C	200	Α				
		T _{case} = 80 °C	135	Α				
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	Α				
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1400	Α				
Module								
I _{t(RMS)}			500	Α				
T_{vj}			- 40 + 150	°C				
T _{stg}			- 40 + 125	°C				
V _{isol}	AC, 1 min.		2500	V				

Characteristics $T_c = \frac{1}{2}$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1,05		V
		T _j = 125 °C		1		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		5,3		mΩ
		T _j = 125°C		7		$m\Omega$
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2,1	2,5	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,4	2,8	V
C _{ies}				11,2		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1,25		nF
C _{res}				0,75		nF
Q_G	V _{GE} = 0V - +15V			480		nC
R _{Gint}	$T_j = {^{\circ}C}$			0		Ω
t _{d(on)}				140		ns
t _r	$R_{Gon} = 8 \Omega$	V _{CC} = 300V		70		ns
E _{on}		I _C = 200A		11		mJ
t _{d(off)}	$R_{Goff} = 8 \Omega$	T _j = 125 °C		442		ns
t _f		V _{GE} = ±15V		45		ns
E _{off}				7,5		mJ
R _{th(j-c)}	per IGBT				0,14	K/W

Superfast NPT-IGBT Modules


SKM 200GB063D

Features

- N channel, homogeneous Silicon structure (NPT - Non punch-through IGBT)
- Low tail current with low temperature dependence
- High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff. of V_{CEsat}
- 50 % less turn off losses
- 30 % less short circuit current
- Very low C_{ies}, C_{oes}, C_{res}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould
- Large clearance (13 mm) and creepage distances (20 mm)


Typical Applications

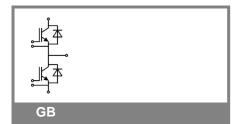
- Switched mode power supplies
- AC inverter servo drives
- UPS uninterruptable power supplies
- · Welding inverters

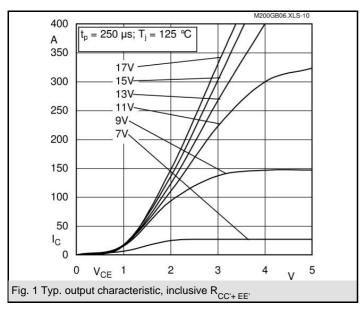
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

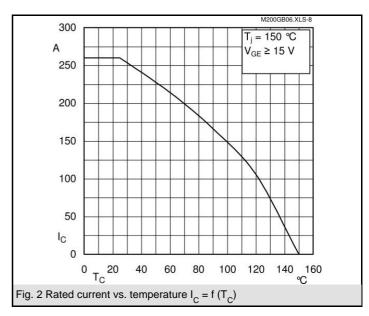
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

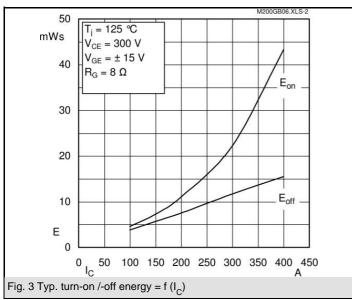
Superfast NPT-IGBT Modules

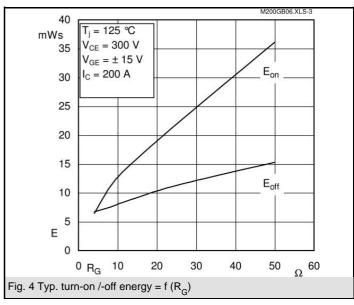
SKM 200GB063D

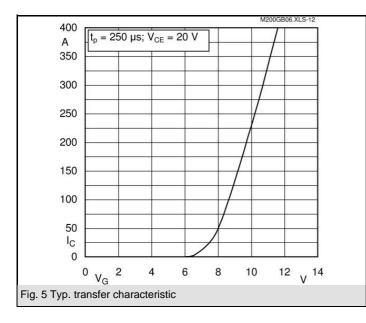

Z _{th} Symbol	Conditions	Values	Units				
$ \begin{array}{c c} \mathbf{Z_{th(j-c)l}} \\ R_i & i = 1 \end{array} $ $ \begin{array}{c c} 90 & mk/W \end{array} $							
R _i	i = 1	90	mk/W				
R _i R _i	i = 2	39	mk/W				
R_{i}	i = 3	9	mk/W				
R_{i}	i = 4	2	mk/W				
tau _i	i = 1	0,0416	s				
tau _i	i = 2	0,0139	s				
tau _i	i = 3	0,0021	s				
tau _i	i = 4	0,0001	s				
Z _{th(j-c)D}			·				
R _i	i = 1	200	mk/W				
R_{i}	i = 2	84	mk/W				
R_{i}	i = 3	14	mk/W				
R_i	i = 4	2	mk/W				
tau _i	i = 1	0,0275	s				
tau _i	i = 2	0,0413	s				
tau _i	i = 3	0,0019	s				
tau _i	i = 4	0,004	s				

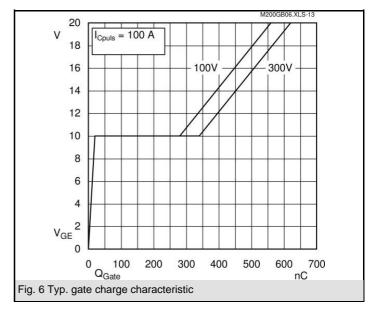

Features

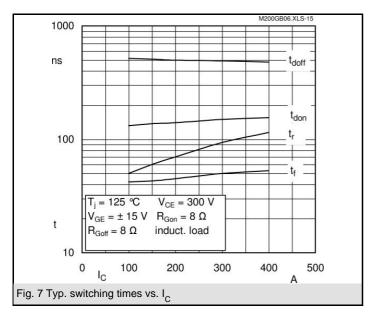

- N channel, homogeneous Silicon structure (NPT - Non punch-through IGBT)
- · Low tail current with low temperature dependence
- High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff. of V_{CEsat}
- 50 % less turn off losses
- 30 % less short circuit current
- Very low C_{ies}, C_{oes}, C_{res}
 Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DCB Direct Copper Bonding** Technology without hard mould
- Large clearance (13 mm) and creepage distances (20 mm)

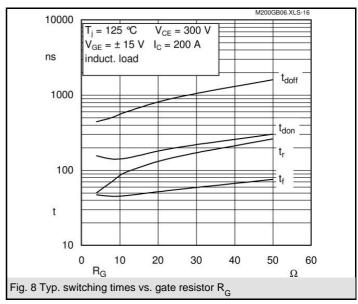

Typical Applications

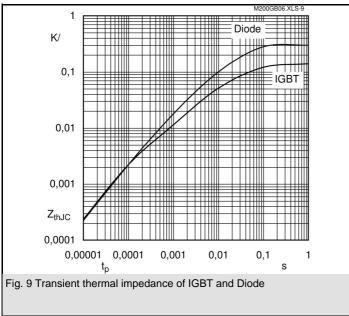

- Switched mode power supplies
- AC inverter servo drives
- UPS uninterruptable power supplies
- Welding inverters

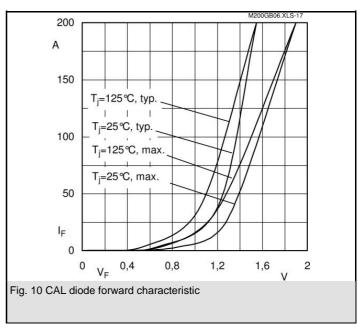


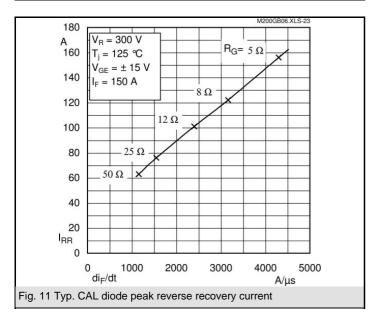


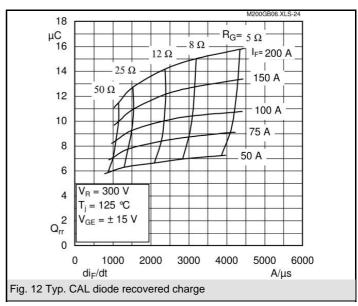


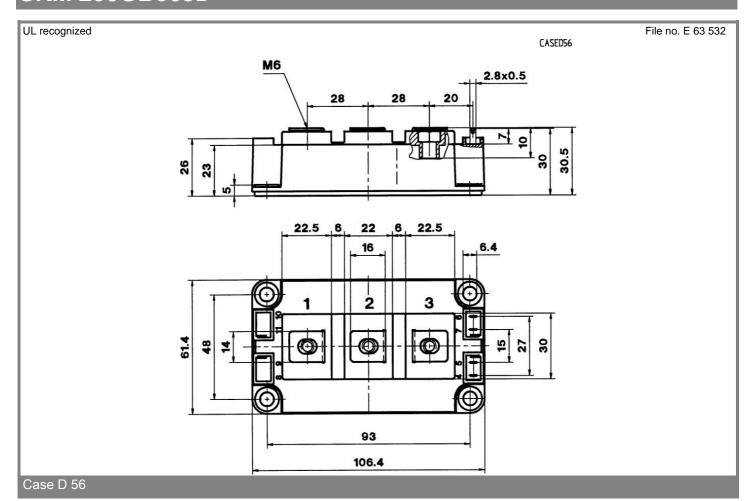


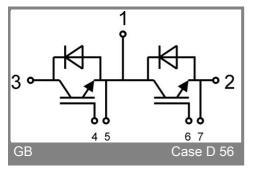












6 03-12-2008 SEI © by SEMIKRON